跳到主要内容

Lorentz equation

When radiation reaction is weak (the radiation power is much smaller than the energy gain power), the motion of charged particles is governed by the Newton-Lorentz equation:

dpdt=qm(E+β×B),\frac{d{\mathbf{p}}}{d t} = \frac{q}{m}(\mathbf{E} + \boldsymbol{\beta}\times\mathbf{B}),
dxdt=pγ\frac{d\mathbf{x}}{d t} = \frac{\mathbf{p}}{\gamma}

where pγmv\mathbf{p} \equiv \gamma m \mathbf{v}, x\mathbf{x}, qq, mm, γ\gamma, v\mathbf{v}, and βv/c\boldsymbol{\beta} \equiv \mathbf{v}/c are the momentum, position, charge, mass, Lorentz factor, velocity, and normalized velocity of the particle, respectively. These coupled equations are discretized using a leapfrog algorithm as

pn+1/2pn1/2Δt=qm(En+pnγn×Bn),\frac{\mathbf{p}^{n+1/2} - \mathbf{p}^{n-1/2}}{\Delta t} = \frac{q}{m}\left(\mathbf{E}^n + \frac{\mathbf{p}^n}{\gamma^n} \times \mathbf{B}^n\right),
xn+1xnΔt=vn+1/2,\frac{\mathbf{x}^{n+1} - \mathbf{x}^n}{\Delta t} = \mathbf{v}^{n+1/2},

and solved using the standard Boris rotation:

pn1/2=pqΔt2mEn,\mathbf{p}^{n-1/2} = \mathbf{p}^- - \frac{q\Delta t}{2m}\mathbf{E}^n,
pn+1/2=p++qΔt2mEn,\mathbf{p}^{n+1/2} = \mathbf{p}^+ + \frac{q\Delta t}{2m}\mathbf{E}^n,
p=p+p×t,\mathbf{p}' = \mathbf{p}^- + \mathbf{p}^- \times \mathbf{t},
p+=p+p×s,\mathbf{p}^+ = \mathbf{p}^- + \mathbf{p}' \times \mathbf{s},
t=qΔt2mγnBn,\mathbf{t} = \frac{q\Delta t}{2m\gamma^n}\mathbf{B}^n,
s=2t1+t2,\mathbf{s} = \frac{2\mathbf{t}}{1+t^2},

where γn=1+p2\gamma^n = \sqrt{1+\mathbf{p}^2}. The update in momentum and position are asynchronized by half a time step, i.e., a leapfrog algorithm is used here. This leapfrog algorithm ensures the self-consistency of the momentum and position evolution.