QED η = ℏ ω / m c 2 ( ε E + p × B ) 2 − ( p ⋅ E ) 2 \eta = \hbar \omega / mc^2 \sqrt{(\varepsilon E + p \times B)^2 -(p\cdot E)^2} η = ℏ ω / m c 2 ( εE + p × B ) 2 − ( p ⋅ E ) 2 if we set the laser photon energy in the unit of m c 2 mc^2 m c 2 , and frequency in the unit of m c 2 / ℏ mc^2 / \hbar m c 2 /ℏ .
η e = ξ ( ε E + p × B ) 2 − ( p ⋅ E ) 2 \eta_e = \xi\sqrt{(\varepsilon E + p \times B)^2 -(p\cdot E)^2} η e = ξ ( εE + p × B ) 2 − ( p ⋅ E ) 2 for laser with wave length λ = 1 μ m \lambda = 1 \mu m λ = 1 μ m , the corresponding energy is 1.024 e V 1.024eV 1.024 e V , and ξ ≈ 1.024 / 0.511 × 1 0 6 \xi \approx 1.024 / 0.511 \times 10^6 ξ ≈ 1.024/0.511 × 1 0 6 .
The spectrum of emission ∂ I ∂ ω = 3 2 π e 3 H e f f m c 2 ( 1 − δ ) [ F 1 ( z q ) + 3 2 δ χ z q F 2 ( z q ) ] \frac{\partial I}{\partial \omega} = \frac{\sqrt{3}}{2\pi} \frac{e^3 H_{eff}}{mc^2}(1-\delta)\bigg[ F_1(z_{q}) + \frac{3}{2}\delta \chi z_q F_2(z_q)\bigg] ∂ ω ∂ I = 2 π 3 m c 2 e 3 H e ff ( 1 − δ ) [ F 1 ( z q ) + 2 3 δχ z q F 2 ( z q ) ] with z q = 2 3 δ χ ( 1 − δ ) z_q = \frac{2}{3} \frac{\delta}{\chi(1-\delta)} z q = 3 2 χ ( 1 − δ ) δ , H e f f = χ E S / γ H_{eff} = \chi E_S/\gamma H e ff = χ E S / γ . and the schwinger field strength E S = m 2 c 3 / e ℏ ≈ 1 0 18 V / m E_S = m^2 c^3/ e\hbar \approx 10^{18} V/m E S = m 2 c 3 / e ℏ ≈ 1 0 18 V / m .
Here ω \omega ω is the emitted photon frequency with ℏ ω = δ γ m c 2 \hbar \omega = \delta \gamma m c^2 ℏ ω = δ γm c 2 , with probability (during Δ t \Delta t Δ t ) in cgs
P ( δ ) = ∂ I q ∂ ω ∂ ω ∂ δ 1 ℏ ω Δ t = [ Δ t e 2 m c ℏ 2 ] 3 χ ( 1 − δ ) 2 π γ δ [ F 1 ( z q ) + 3 2 δ χ z q F 2 ( z q ) ] P(\delta) = \frac{\partial I_q}{\partial \omega} \frac{\partial \omega}{\partial \delta} \frac{1}{\hbar \omega} \Delta t \\ = \bigg[\Delta t \frac{e^2 mc}{\hbar^2}\bigg] \frac{\sqrt{3} \chi (1-\delta)}{2\pi \gamma \delta} \bigg[ F_1(z_q) + \frac{3}{2} \delta \chi z_q F_2(z_q) \bigg] P ( δ ) = ∂ ω ∂ I q ∂ δ ∂ ω ℏ ω 1 Δ t = [ Δ t ℏ 2 e 2 m c ] 2 πγ δ 3 χ ( 1 − δ ) [ F 1 ( z q ) + 2 3 δχ z q F 2 ( z q ) ] when we change into the normalization representation:
P ( δ ) = [ α f Δ t ξ 0 ] 3 χ ( 1 − δ ) 2 π γ δ [ F 1 ( z q ) + 3 2 δ χ z q F 2 ( z q ) ] P(\delta) = \bigg[ \frac{ \alpha_f \Delta t}{ \xi_0} \bigg] \frac{\sqrt{3} \chi (1-\delta)}{2\pi \gamma \delta} \bigg[ F_1(z_q) + \frac{3}{2} \delta \chi z_q F_2(z_q) \bigg] P ( δ ) = [ ξ 0 α f Δ t ] 2 πγ δ 3 χ ( 1 − δ ) [ F 1 ( z q ) + 2 3 δχ z q F 2 ( z q ) ] here ξ 0 = ℏ ω 0 / m c 2 \xi_0 = \hbar \omega_0 / mc^2 ξ 0 = ℏ ω 0 / m c 2 . ω 0 \omega_0 ω 0 is the frequecy we used to normalize every variable.
Similarly, the pair production per Δ t \Delta t Δ t in cgs and has been normalized:
P ( δ e ) = [ α f Δ t ξ 0 ] 3 2 π χ 1 ε ( δ e − 1 ) δ e [ F 1 ( z p ) − 3 2 χ γ z p F 2 ( z p ) ] P(\delta_e) = \bigg[ \frac{\alpha_f \Delta t}{\xi_0} \bigg] \frac{\sqrt{3}}{2\pi} \chi \frac{1}{\varepsilon} (\delta_e - 1) \delta_e \bigg[F_1(z_p) -\frac{3}{2}\chi_\gamma z_p F_2(z_p) \bigg] P ( δ e ) = [ ξ 0 α f Δ t ] 2 π 3 χ ε 1 ( δ e − 1 ) δ e [ F 1 ( z p ) − 2 3 χ γ z p F 2 ( z p ) ] with z p = 2 3 χ γ ( 1 − δ e ) δ e z_p = \frac{2}{3 \chi_\gamma (1 - \delta_e) \delta_e } z p = 3 χ γ ( 1 − δ e ) δ e 2 , electron energy: δ e ε \delta_e \varepsilon δ e ε , positron energy ( 1 − δ e ) ε (1-\delta_e) \varepsilon ( 1 − δ e ) ε . their momentum is parallel to the photon momentum with : δ e ε / c \delta_e \varepsilon / c δ e ε / c and ( 1 − δ e ) ε / c (1-\delta_e) \varepsilon / c ( 1 − δ e ) ε / c &&
χ γ = ℏ ω m c 2 H e f f γ E s = ξ 0 ε ( E + c ω k × B ) 2 − ( k ∣ k ∣ ⋅ E ) 2 = ξ 0 ( ε E + p × B ) 2 − ( p ⋅ E ) 2 \chi_\gamma = \frac{\hbar \omega}{mc^2} \frac{H_{eff}^\gamma}{E_s}\\ = \xi_0 \varepsilon \sqrt{(E+ \frac{c}{\omega} k\times B )^2 - (\frac{k}{|k|}\cdot E)^2} \\ =\xi_0 \sqrt{(\varepsilon E + p \times B)^2 - (p \cdot E)^2} χ γ = m c 2 ℏ ω E s H e ff γ = ξ 0 ε ( E + ω c k × B ) 2 − ( ∣ k ∣ k ⋅ E ) 2 = ξ 0 ( εE + p × B ) 2 − ( p ⋅ E ) 2 Thus χ γ = χ e \chi_\gamma = \chi_e χ γ = χ e if the field strength is the same and the rest energy is the same for electron and photon.
ε = ℏ ω γ / m c 2 \varepsilon = \hbar \omega_\gamma / mc^2 ε = ℏ ω γ / m c 2 Here,
F 1 ( x ) = x ∫ x ∞ d t K 5 / 3 ( t ) F_1 (x) = x\int_x^\infty dt K_{5/3}(t) F 1 ( x ) = x ∫ x ∞ d t K 5/3 ( t ) F 2 ( x ) = x K 2 / 3 ( x ) F_2(x) = x K_{2/3}(x) F 2 ( x ) = x K 2/3 ( x ) by using 2 d d z K 2 / 3 ( z ) + K 1 / 3 ( z ) = − K 5 / 3 ( z ) 2 \frac{d}{dz} K_{2/3}(z) + K_{1/3}(z) = -K_{5/3}(z) 2 d z d K 2/3 ( z ) + K 1/3 ( z ) = − K 5/3 ( z ) , the photon emission probability can be simplified as
P ( δ ) = α f Δ t ξ 0 3 π γ [ ( 2 + δ 2 1 − δ ) K 2 / 3 ( z ) − ∫ z ∞ K 1 / 3 ( t ) d t ] P(\delta) = \frac{\alpha_f \Delta t}{\xi_0 \sqrt{3}\pi \gamma} \bigg[ \bigg(2+ \frac{\delta^2}{1-\delta} \bigg) K_{2/3}(z) - \int_{z}^\infty K_{1/3}(t)dt \bigg] P ( δ ) = ξ 0 3 πγ α f Δ t [ ( 2 + 1 − δ δ 2 ) K 2/3 ( z ) − ∫ z ∞ K 1/3 ( t ) d t ] with z = 2 δ 3 χ ( 1 − δ ) z = \frac{2\delta}{3\chi(1-\delta)} z = 3 χ ( 1 − δ ) 2 δ .
Also, for the pair production probability we use :
P ( δ e ) = α f Δ t ξ 0 3 π ε [ ( 2 − 1 δ ( 1 − δ ) ) K 2 / 3 ( z ) − ∫ z ∞ K 1 / 3 ( t ) d t ] P(\delta_e) = \frac{\alpha_f \Delta t}{\xi_0 \sqrt{3}\pi \varepsilon} \bigg[ \bigg(2 - \frac{1}{\delta(1-\delta)} \bigg) K_{2/3}(z) - \int_{z}^\infty K_{1/3}(t)dt \bigg] P ( δ e ) = ξ 0 3 π ε α f Δ t [ ( 2 − δ ( 1 − δ ) 1 ) K 2/3 ( z ) − ∫ z ∞ K 1/3 ( t ) d t ] With z = 2 3 χ δ ( 1 − δ ) z= \frac{2}{3\chi \delta (1- \delta)} z = 3 χδ ( 1 − δ ) 2 .
while for the 2nd kind modified bessel function K 2 / 3 ( x ) K_{2/3}(x) K 2/3 ( x ) , this can be calculated from the gsl lib. and the 1 / 3 1/3 1/3 integration can be done via a numerical interpolation.
Numerical Tricks for stochastic radiation since the radiation spectrum is divergent in the infrared limit, a numerical tricks has been used to avoid this problem. we have borrowed this method from Ginsokov's :
let random r 1 , r 2 ∈ [ 0 , 1 ] r_1, r_2 \in [0, 1] r 1 , r 2 ∈ [ 0 , 1 ] . a photon with energy r 1 γ m c 2 r_1 \gamma mc^2 r 1 γm c 2 will be emitted if r 2 < P ( r 1 ) r_2 < P(r_1) r 2 < P ( r 1 ) .
Tricks:
let δ = r 1 3 \delta = r_1^3 δ = r 1 3 , and
P m ( r 1 ) ≡ ∂ f ( r ) ∂ r P ( f ( r ) ) P_m(r_1) \equiv \frac{\partial f(r)}{\partial r} P(f(r)) P m ( r 1 ) ≡ ∂ r ∂ f ( r ) P ( f ( r )) where f ( r ) = r 3 f(r) = r^3 f ( r ) = r 3 .
at last, if two random r 1 , r 2 r_1, r_2 r 1 , r 2 obeys r 2 < P m ( r 1 ) r_2 < P_m(r_1) r 2 < P m ( r 1 ) . then a photon with energy r 1 γ m c 2 r_1 \gamma mc^2 r 1 γm c 2 will be emitted.