跳到主要内容

QED

η=ω/mc2(εE+p×B)2(pE)2\eta = \hbar \omega / mc^2 \sqrt{(\varepsilon E + p \times B)^2 -(p\cdot E)^2}

if we set the laser photon energy in the unit of mc2mc^2, and frequency in the unit of mc2/mc^2 / \hbar.

ηe=ξ(εE+p×B)2(pE)2\eta_e = \xi\sqrt{(\varepsilon E + p \times B)^2 -(p\cdot E)^2}

for laser with wave length λ=1μm\lambda = 1 \mu m, the corresponding energy is 1.024eV1.024eV, and ξ1.024/0.511×106\xi \approx 1.024 / 0.511 \times 10^6.

The spectrum of emission

Iω=32πe3Heffmc2(1δ)[F1(zq)+32δχzqF2(zq)]\frac{\partial I}{\partial \omega} = \frac{\sqrt{3}}{2\pi} \frac{e^3 H_{eff}}{mc^2}(1-\delta)\bigg[ F_1(z_{q}) + \frac{3}{2}\delta \chi z_q F_2(z_q)\bigg]

with zq=23δχ(1δ)z_q = \frac{2}{3} \frac{\delta}{\chi(1-\delta)}, Heff=χES/γH_{eff} = \chi E_S/\gamma. and the schwinger field strength ES=m2c3/e1018V/mE_S = m^2 c^3/ e\hbar \approx 10^{18} V/m.

Here ω\omega is the emitted photon frequency with ω=δγmc2\hbar \omega = \delta \gamma m c^2, with probability (during Δt\Delta t) in cgs

P(δ)=Iqωωδ1ωΔt=[Δte2mc2]3χ(1δ)2πγδ[F1(zq)+32δχzqF2(zq)]P(\delta) = \frac{\partial I_q}{\partial \omega} \frac{\partial \omega}{\partial \delta} \frac{1}{\hbar \omega} \Delta t \\ = \bigg[\Delta t \frac{e^2 mc}{\hbar^2}\bigg] \frac{\sqrt{3} \chi (1-\delta)}{2\pi \gamma \delta} \bigg[ F_1(z_q) + \frac{3}{2} \delta \chi z_q F_2(z_q) \bigg]

when we change into the normalization representation:

P(δ)=[αfΔtξ0]3χ(1δ)2πγδ[F1(zq)+32δχzqF2(zq)]P(\delta) = \bigg[ \frac{ \alpha_f \Delta t}{ \xi_0} \bigg] \frac{\sqrt{3} \chi (1-\delta)}{2\pi \gamma \delta} \bigg[ F_1(z_q) + \frac{3}{2} \delta \chi z_q F_2(z_q) \bigg]

here ξ0=ω0/mc2\xi_0 = \hbar \omega_0 / mc^2. ω0\omega_0 is the frequecy we used to normalize every variable.

Similarly, the pair production per Δt\Delta t in cgs and has been normalized:

P(δe)=[αfΔtξ0]32πχ1ε(δe1)δe[F1(zp)32χγzpF2(zp)]P(\delta_e) = \bigg[ \frac{\alpha_f \Delta t}{\xi_0} \bigg] \frac{\sqrt{3}}{2\pi} \chi \frac{1}{\varepsilon} (\delta_e - 1) \delta_e \bigg[F_1(z_p) -\frac{3}{2}\chi_\gamma z_p F_2(z_p) \bigg]

with zp=23χγ(1δe)δez_p = \frac{2}{3 \chi_\gamma (1 - \delta_e) \delta_e }, electron energy: δeε\delta_e \varepsilon, positron energy (1δe)ε(1-\delta_e) \varepsilon. their momentum is parallel to the photon momentum with : δeε/c\delta_e \varepsilon / c and (1δe)ε/c(1-\delta_e) \varepsilon / c&&

χγ=ωmc2HeffγEs=ξ0ε(E+cωk×B)2(kkE)2=ξ0(εE+p×B)2(pE)2\chi_\gamma = \frac{\hbar \omega}{mc^2} \frac{H_{eff}^\gamma}{E_s}\\ = \xi_0 \varepsilon \sqrt{(E+ \frac{c}{\omega} k\times B )^2 - (\frac{k}{|k|}\cdot E)^2} \\ =\xi_0 \sqrt{(\varepsilon E + p \times B)^2 - (p \cdot E)^2}

Thus χγ=χe\chi_\gamma = \chi_e if the field strength is the same and the rest energy is the same for electron and photon.

ε=ωγ/mc2\varepsilon = \hbar \omega_\gamma / mc^2

Here,

F1(x)=xxdtK5/3(t)F_1 (x) = x\int_x^\infty dt K_{5/3}(t)
F2(x)=xK2/3(x)F_2(x) = x K_{2/3}(x)

by using 2ddzK2/3(z)+K1/3(z)=K5/3(z)2 \frac{d}{dz} K_{2/3}(z) + K_{1/3}(z) = -K_{5/3}(z), the photon emission probability can be simplified as

P(δ)=αfΔtξ03πγ[(2+δ21δ)K2/3(z)zK1/3(t)dt]P(\delta) = \frac{\alpha_f \Delta t}{\xi_0 \sqrt{3}\pi \gamma} \bigg[ \bigg(2+ \frac{\delta^2}{1-\delta} \bigg) K_{2/3}(z) - \int_{z}^\infty K_{1/3}(t)dt \bigg]

with z=2δ3χ(1δ)z = \frac{2\delta}{3\chi(1-\delta)}.

Also, for the pair production probability we use :

P(δe)=αfΔtξ03πε[(21δ(1δ))K2/3(z)zK1/3(t)dt]P(\delta_e) = \frac{\alpha_f \Delta t}{\xi_0 \sqrt{3}\pi \varepsilon} \bigg[ \bigg(2 - \frac{1}{\delta(1-\delta)} \bigg) K_{2/3}(z) - \int_{z}^\infty K_{1/3}(t)dt \bigg]

With z=23χδ(1δ)z= \frac{2}{3\chi \delta (1- \delta)}.

while for the 2nd kind modified bessel function K2/3(x)K_{2/3}(x), this can be calculated from the gsl lib. and the 1/31/3 integration can be done via a numerical interpolation.

Numerical Tricks for stochastic radiation

since the radiation spectrum is divergent in the infrared limit, a numerical tricks has been used to avoid this problem. we have borrowed this method from Ginsokov's :

let random r1,r2[0,1]r_1, r_2 \in [0, 1]. a photon with energy r1γmc2r_1 \gamma mc^2 will be emitted if r2<P(r1)r_2 < P(r_1).

Tricks:

let δ=r13\delta = r_1^3, and

Pm(r1)f(r)rP(f(r))P_m(r_1) \equiv \frac{\partial f(r)}{\partial r} P(f(r))

where f(r)=r3f(r) = r^3.

at last, if two random r1,r2r_1, r_2 obeys r2<Pm(r1)r_2 < P_m(r_1). then a photon with energy r1γmc2r_1 \gamma mc^2 will be emitted.