跳到主要内容

Normalization

This code was normalized with plasma normalization with:

E=eE/mcω;B=eB/mcω;x=kx;t=ωt;v=β=v/c;E'=eE/mc\omega; B'=eB/mc\omega; x' = kx; t' = \omega t; v' = \beta = v /c;
p=p/mec;E=E/mec2;M=M/me;p'=p/m_ec; E'=E/m_ec^2; M' = M / m_e;
=1/k,/t=1/ω/t;\nabla' = 1/k \nabla, \partial/\partial t' = 1/\omega \partial/\partial t;
ρ=ρ/(nce);J=J/(ncec);\rho' = \rho /(n_c e); J' = J / (n_c e c);

with nc=mω24πe2n_c = \frac{m\omega^2}{4\pi e^2}

Now maxwell equation becomes

E=ρ\nabla \cdot E = \rho
B=0\nabla \cdot B = 0
×E=Bt\nabla \times E = -\frac{\partial B}{\partial t}
×B=Et+J\nabla \times B = \frac{\partial E}{\partial t} + J
tρ+J=0\partial_t \rho + \nabla \cdot J = 0

Assuming we are using a new laser with frequency ω=nω0\omega' = n \omega_0, which means

ω2ω2=ncnc\frac{\omega'^2}{\omega^2} = \frac{n_c'}{n_c}

Thus the new ncn_c' will be:

nc=ωncω2=ω2m4πe2n_c' = \omega' \frac{n_c}{\omega^2} = \omega'^2 \frac{m}{4\pi e^2}

This means, when you use new frequency ω1\omega' \neq 1, then, the critical density will be ω2\omega'^2

It's better to use ω=1\omega = 1, then you only need to worry about the nn. Then the intensity of field is still a standard normalization.