跳到主要内容

Maxwell equations

E=ρ,\nabla \cdot \mathbf{E} = \rho,
B=0,\nabla \cdot \mathbf{B} = 0,
×E=Bt,\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t},
×B=Et+J.\nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{\partial t} + \mathbf{J}.

Discrete version:

Eyn+1EynΔti+1/2,j,k+1/2=Bi+1,j,k+1/2Bi,j,k+1/2Δxzn+1/2+Bi+1/2,j,k+1Bi+1/2,j,kΔzxn+1/2Jy,i+1/2,j,k+1/2n+1/2,\frac{E_y^{n+1}-E_y^n}{\Delta t}\bigg|_{i+1/2, j, k+1/2} = -\frac{B_{i+1, j, k + 1/2} - B_{i, j, k + 1/2}}{\Delta x}\bigg|_z^{n+1/2} + \frac{B_{i+1/2,j, k+1} - B_{i+1/2,j, k}}{\Delta z}\bigg|_x^{n+1/2}-J_{y,i+1/2,j, k+1/2}^{n+1/2},
Bzn+1/2Bzn1/2Δti,j,k+1/2=Ei+1/2,j,kEi1/2,j,kΔxyn+Ei+1/2,j+1,kEi+1/2,j,kΔyxn\frac{B_z^{n+1/2}-B_z^{n-1/2}}{\Delta t}\bigg|_{i, j, k+1/2} = -\frac{E_{i+1/2, j, k} - E_{i-1/2, j, k}}{\Delta x}\bigg|_y^{n} + \frac{E_{i+1/2,j+1, k} - E_{i+1/2,j, k}}{\Delta y}\bigg|_x^{n}