跳到主要内容

Radiative Pusher

LL equation vs sokolov correction

In the sokolov paper, he had reformulated the Landau-Lifshitz equation in a more elegant mannar to meet the mass on shell requirement.

dpαdτ=emc2FαβdxβdτIclpαmc2\frac{dp^\alpha}{d\tau} = \frac{e}{mc^2}F^{\alpha \beta}\frac{dx_\beta}{d\tau} - \frac{I_{cl}p^\alpha}{mc^2}
dxαdτ=cpα+τ0fLeαm\frac{dx^\alpha}{d\tau} = cp^\alpha + \frac{\tau_0 f^{\alpha}_{Le}}{m}
τ0=2e2/3mc3\tau_0=2e^2/3mc^3

Convert into 3-vector form and using the plasma normalization, these equation becomes:

dpe,p/dt=fLe,p[uˉe,p×B]ue,pεe,p2(fLe,puˉe,p)dp_{e,p}/dt = f_{Le,p} \mp [\bar u_{e,p} \times B] - u_{e, p} \varepsilon_{e, p}^2 (f_{Le,p} \cdot \bar{u}_{e,p})
dxe,p/dt=ue,p+uˉe,p,dx_{e,p}/dt = u_{e,p} + \bar{u}_{e,p},
εe,p=1+pe,p2,\varepsilon_{e,p} = \sqrt{1 + p_{e,p}^2},
ue,p=pe,p/εe,pu_{e, p} = p_{e, p} / \varepsilon_{e,p}

where

fLe,p=(E+ue,p×B),ε=τ0ωf_{Le,p} = \mp(E+u_{e,p}\times B), \varepsilon=\tau_0 \omega
uˉe,p=εfLe,pue,p(ue,pfLe,p)1+ε(ue,pfLe,p)\bar{u}_{e,p} = \varepsilon \frac{f_{Le,p}-u_{e,p}(u_{e,p} \cdot f_{Le,p})}{1+\varepsilon (u_{e,p} \cdot f_{Le,p})}

with ε=τ0ω\varepsilon = \tau_0 \omega.

ε=τ0ω=23α3ωau\varepsilon = \tau_0 \omega = \frac{2}{3} \alpha^3\omega_{au}

and

ωau=ω2Ry=ωα2mec2\omega_{au} = \frac{\hbar\omega}{2Ry} = \frac{\hbar\omega}{\alpha^2 m_e c^2}

thus

ε=23αωmec2=23αξ\varepsilon = \frac{2}{3} \alpha \frac{\hbar \omega}{m_e c^2} = \frac{2}{3} \alpha \xi

This is the only point we need laser photon energy.

FRR,classical=23αfξL{γ[(t+pγ)E+pγ×(t+pγ)B]\mathbf{F}_{\mathrm{RR,classical}} =\frac{2}{3}\alpha_f \xi_L \bigg \lbrace \gamma \bigg[ \bigg (\frac{\partial}{\partial t}+\frac{\mathbf{p}}{\gamma}\cdot\nabla \bigg )\mathbf{E}+\frac{\mathbf{p}}{\gamma} \times \bigg (\frac{\partial}{\partial t}+\frac{\mathbf{p}}{\gamma}\cdot\nabla \bigg )\mathbf{B} \bigg]
+[E×B+1γB×(B×p)+E(pE)]γp[(E+pγ×B)21γ2(Ep)2]},+ \bigg[\mathbf{E}\times \mathbf{B}+\frac{1}{\gamma}\mathbf{B}\times (\mathbf{B}\times \mathbf{p})+\mathbf{E}(\mathbf{p \cdot E}) \bigg] -\gamma\mathbf{p} \bigg [ \bigg(\mathbf{E}+\frac{\mathbf{p}}{\gamma}\times \mathbf{B} \bigg)^2-\frac{1}{\gamma^2}(\mathbf{E \cdot p})^2 \bigg ] \bigg\rbrace,

sokolov quantum correction

when we use the quantum correction, the τ0\tau_0 becomes

τ0τ0IQEDIcl=τ0q(χ)\tau_0 \rightarrow \tau_0 \frac{I_{QED}}{I_{cl}} = \tau_0 q(\chi)

and

IQEDIcl=q(χ)=938π0dr0r0[rχK5/3(x)dx+r0rχχ2K2/3(rχ)]\frac{I_{QED}}{I_{cl}} =q(\chi)=\frac{9\sqrt{3}}{8\pi} \int_0^\infty dr_0 r_0 \bigg[ \int_{r_\chi}^\infty K_{5/3}(x)dx+r_0r_{\chi}\chi^2 K_{2/3}(r_\chi)\bigg]

Luckily a very good approximate function has been found in Bulanov's paper:

q(η)=(1.0+4.8(1.0+η)log(1.0+1.7η)+2.44η2)2/3q(\eta) = (1.0 + 4.8(1.0 + \eta) \log(1.0 + 1.7 \eta) + 2.44\eta^2)^{-2/3}

Here the definition of η\eta is slightly different with that in sokolov with a 2/32/3 factor:

χ=3/2η\chi = 3/2 \eta.

qeta = @(eta) (1.0 + 4.8 * (1.0 + eta) .* log(1.0 + 1.7 * eta) + 2.44 * eta .* eta).^-0.666;
qchi = @(chi) (1.0 + 1.04 * chi).^-1.333;
chi = 10.^linspace(-2, 2, 50);
eta = chi / 1.5;
plot(chi.^2, chi.^2 .* qchi(chi), 'linewidth', 3);
hold on
plot(eta.^2, eta.^2 .* qeta(eta), 'linewidth', 3);

xlim([1e-4, 1e4])
ylim([1e-4, 1e2])


set(gca, 'xscale', 'log', 'yscale', 'log')

set(gca, 'fontsize', 18, 'box', 'on', 'linewidth', 1.5)

legend('qchi', 'qeta')

How do we calculate electron spectra

  1. we assume only high energy electrons contribute to the spectra, low energy electron only radiated through the near field manner.
  2. we assume these high energy electrons radiation in the direction of their momentum.
  3. we use the angle integrated spectra formula to generate a vector of spectra, which only depend on the radiation frequency.

The modified radiation spectra is :

dEmdω=0t[eIclωcδ2(npp)δ(log(ωˉ)logωc)]dt\frac{d\mathcal{E}^m}{d\omega'} = \int_0^t \bigg[\sum_e \frac{I_{cl}}{\omega_c} \delta^2 (\vec n - \frac{\vec p}{p}) \delta (\log(\bar \omega) - \log \omega_c) \bigg] dt

and with the conversion:

dErad(ω,n)dndω=Qcl(ωωˉ)dEmdωdlog(ωˉ)\frac{d\mathcal{E}_{\text{rad}}(\omega', \vec{n})}{d \vec{n} d\omega'} = \int Q_{cl}\bigg(\frac{\omega'}{\bar \omega}\bigg) \frac{d\mathcal{E}^m}{d\omega'} d\log(\bar \omega)

with ωc=Eχ\omega_c = \mathcal{E}\chi

  1. in each step we only calculate the modified spectra, and store it, until dump

in this step, the summation core is Icl/ωcI_{cl} / \omega_c. And

Icl/ωc=(2/3)3χαfγI_{cl}/\omega_c = (2/3)^3 \frac{\chi \alpha_f}{\gamma}

thus, for each particle at each step we only find the ωc\omega_c, ϕ\phi, θ\theta, and count on its weight times this quantity.

In our program, we only count χQΔt/γ\chi Q \Delta t / \gamma, here QQ is the particle weight.

  1. in the post processing python file, the 2nd formula will be used with our dropped (2/3)3αf(2/3)^3 \alpha_f.

When we use the method from sokolov:

  1. ωc=Eeχ\omega_c = \mathcal{E}_e \chi. and find the discrete value log(ωˉ)i\log(\bar \omega)_i ~ logωc\log \omega_c.
  2. according to the direction of p\vec p find θj\theta_j, ϕk\phi_k.
  3. add spectra with
Ei,j,kEi,j,k+Ee2(fluˉ)ΔtωcΔlog(ωˉ)Δnj,k\mathcal{E}_{i, j, k} \rightarrow \mathcal{E}_{i, j, k} + \frac{\mathcal{E}_e^2 (\vec{f}_{l} \cdot \vec{\bar{u}})\Delta t}{\omega_c \Delta\log(\bar{\omega}) \Delta \vec{n}_{j, k}}

where Δnj,k=sin(θj)ΔθΔϕ\Delta \vec n_{j, k} = \sin(\theta_j) \Delta \theta \Delta \phi.

in the sokolov push we only calculate :

ε=dIdωdtdω=Iclωcq(χ)=(2/3)3χαq(χ)/γ\varepsilon = \int\frac{dI}{d\omega} dt d\omega = \frac{I_{cl}}{\omega_c}q(\chi) \\ =(2/3)^3 \chi \alpha q(\chi)/\gamma